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Motivating Question

Is it possible to realise all category O representa-
tions of degenerate double affine Hecke algebras as
submodules of objects that are better understood,
namely Verma Modules?

Objectives

1 Gain a working knowledge of group theory,
representation theory and degenerate double
affine Hecke algebras (DAHA)

2 Find all unique periodic Cherednik diagrams
that parameterize irreducible representation of
degenerate DAHA of 2 and 3 boxes

3 Explicitly describe all irreducible
representations corresponding to all diagrams
from 2)

4 Using 3) answer the Motivating question for
those cases

Introduction

•The study of double affine Hecke Algebras
originated from a branches of theoretical physics
and mathematics

•Study of their representations is a very active
area of research in the UK and abroad

•For AHA, Ḣ(n), and DAHA, Ḧκ(n), the answer
to the motivation question has been answered in
literature as follows:

Ḣ(n) Ḧκ(n)
Semisimple [GNP] [B]
Non-semisimple [GNP] ?

The aim of this project was to find an answer to
the lower right corner for the cases n=2,3. This
will be done by explicitly calculating the irreducible
representations of Ḧκ(2) and Ḧκ(3) for all κ.

Young Diagrams & Their
Generalisations (Objective 1)

•The symmetric group Sn, is a well understood
group

•A classical result states that all irreducible
representations of Sn are in 1-to-1 correspondence
with objects called Young diagrams (Fig. 1a)

•For AHA and DAHA, a similar correspondence
exists with generalisations of Young diagrams

•Non-semisimple representations of degenerate
DAHA share this relation with Periodic
Cherednik diagrams (Fig. 1b)

Fig. 1a. Young diagrams n=3
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Fig. 1b. Periodic Cherednik diagram for Ḧ4(2)

Classifying Diagrams (Objective 2)

Lemma: If D′ is a translation of D, the answer to
the motivating question is the same for LD′ and LD.

•Diagrams for n=2

repeated with period l←− ↓ m
. . .

...
...

. . .
...

...
Fig. 2. Periodic Cherednik diagrams for n=2; l=-1, l=0 and l=1

•Diagrams for n=3, m=2

Repeated with period l≥-1

Repeated with period l ≥ 0

•Diagrams for n=3, m=3

With gaps of k1 ≥ -1 and k2 ≥ -1 between blocks
Repeated with period l ≥ k1+k2+1

Verma Modules

To each diagram D we can associate a representation
MD (Verma module). Verma modules are well un-
derstood, in terms of both their structure and their
interactions with the algebra (Fig. 3).
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Fig. 3. Graphical Representation of MD for Ḧ1(2)

Irreducible modules (Objective 3)

•An irreducible module is a building block of any
representation, they can not be further
decomposed and any representation can be
formed from them

•Associated with each of our diagrams D is the
irreducible module LD; it is formed by the
construction called quotient on MD but this can
be complicated to realise. So instead we look to
find LD using a simpler construction called
submodule.
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Fig. 4. Graphical Representation of LD (in black) for Ḧ1(2)

Results (Objective 4)

Following similar calculations for all κ we were able
to establish:

Theorem 1

Let n=2, D any periodic Cherednik diagram
which is not a skew Young diagram. Then there
exists a sequence of integers µ, constructed from
D, such that LD embeds into Mµ, LD ↪→ Mµ

Theorem 2

Let n=3, D any periodic Cherednik diagram
which is not a skew Young diagram, with 3 boxes
organised in 2 rows. Then there exists a sequence
of integers µ, constructed from D, such that LD
embeds into Mµ, LD ↪→ Mµ

Conclusions

1 All irreducible representations of degenerate
DAHA with n=2 can be realised as
submodules of the better understood Verma
modules

2 The same is true for irreducible representations
of degenerate DAHA with n=3 and m=2

3 It is our conjecture that all non-semisimple
representations of degenerate DAHA can be
realised as submodules of the better
understood Verma modules
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